HABLEMOS DE DIABETES (PRIMERA PARTE)
Resumen
La Federación Internacional de Diabetes (FID) definela diabetes mellitus, más conocida
simplemente como “diabetes”, como una afección crónica que se produce cuando se dan
niveles elevados de glucosa en sangre debido a la falta de insulina o la incapacidad de
las células de responder ante la misma. En esta primera parte, se describe su
clasificación y se abunda sobre las características de los tipos 1 y2. Se describe su
diagnóstico y se presentan los principales actores de la patología. Finalmente se abordan
las complicaciones de la enfermedad.
Texto completo:
PDFReferencias
Abdul-Ghani, M. A., Matsuda, M., Balas, B., & DeFronzo, R. A. (2007). Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care, 30(1), 89–94. https://doi.org/10.2337/dc06-1519
Abdullah, K. M., Abul Qais, F., Hasan, H., & Naseem, I. (2019). Anti-diabetic study of vitamin B6 on hyperglycaemia induced protein carbonylation, DNA damage and ROS production in alloxan induced diabetic rats. Toxicology Research, 8(4), 568–579. https://doi.org/10.1039/c9tx00089e
ADA. (2019). Standards of Medical Care in Diabetes -2019. Diabetes Care, 42(2), 204.
Ahmed, N. (2005, January). Advanced glycation endproducts - Role in pathology of diabetic complications. Diabetes Research and Clinical Practice, Vol. 67, pp. 3–21. https://doi.org/10.1016/j.diabres.2004.09.004
Arneth, B., Arneth, R., & Shams, M. (2019, May 18). Metabolomics of Type 1 and Type 2 Diabetes. International Journal of Molecular Sciences, Vol. 20. https://doi.org/10.3390/ijms20102467
Arraiz, N., Leal, E., Linares, S., Mengual, E., Valdelamar, L., Seyfi, H., … Zulia, E. (2007). B iología m olecular de los t ransportadores de glucosa : clasificación , estructura y distribución. Archivos Venezolanos de Farmacologia y Terapeutica, 26(2), 76–86.
Arranz Martín, A., Calle Pascual, A., del Cañizo Gómez, F. J., González Albarrán, O., Lisbona Gil, A., Botella Serrano, M., & Pallardo Sánchez, L. F. (2015). Estado actual de los sistemas de infusión subcutánea continua de insulina y monitorización continua de glucosa en la Comunidad de Madrid. Endocrinologia y Nutricion, 62(4), 171–179. https://doi.org/10.1016/j.endonu.2015.01.003
Baker, J. R., Metcalf, P. A., Johnson, R., Newman, D., & Rietz, P. (1985). Use of Protein-BasedStandardsin Automated ColorimetricDeterminations of Fructosaminein Serum. In CLIN. CHEM (Vol. 31).
Basuki, W., Hiromura, M., Adachi, Y., Tayama, K., Hattori, M., & Sakurai, H. (2006). Enhancement of insulin signaling pathway in adipocytes by oxovanadium(IV) complexes. Biochemical and Biophysical Research Communications, 349(3), 1163–1170. https://doi.org/10.1016/j.bbrc.2006.08.162
Bowden, D. W., Qi, L., Du, M., Liou, G. I., Cheng, J., Spinedi, E., … Kautzky-willer, A. (2015). World Journal of. 9358(1), 1–216.
Butterworth, P. J. (2005). Lehninger: principles of biochemistry (4th edn) D. L. Nelson and M. C. Cox, W. H. Freeman & Co., New York, 1119 pp (plus 17 pp glossary), ISBN 0-7167-4339-6 (2004). Cell Biochemistry and Function, 23(4), 293–294. https://doi.org/10.1002/cbf.1216
Chatzigeorgiou, A., Halapas, A., Kalafatakis, K., & Kamper, E. (2009). The use of animal models in the study of diabetes mellitus. In Vivo (Athens, Greece), 23(2), 245–258. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19414410
Chellappan, D. K., Sivam, N. S., Teoh, K. X., Leong, W. P., Fui, T. Z., Chooi, K., … Dua, K. (2018). Gene therapy and type 1 diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 1188–1200. https://doi.org/10.1016/j.biopha.2018.09.138
Cornell, S. (2015). Continual evolution of type 2 diabetes: an update on pathophysiology and emerging treatment options. Therapeutics and Clinical Risk Management, 11, 621–632. https://doi.org/10.2147/TCRM.S67387
Cui, B., Han, L., Qu, J., & Lv, Y. (2009). Hypoglycemic activity of Grifola frondosa rich in vanadium. Biological Trace Element Research, 131(2), 186–191. https://doi.org/10.1007/s12011-009-8355-4
Curós Abadal, A., & Flores, J. S. (2008). Relevancia de la hiperglucemia en el síndrome coronario agudo. Revista Espanola de Cardiologia, Vol. 61, pp. 447–450. https://doi.org/10.1157/13119986
DeFronzo, R. A., Eldor, R., & Abdul-Ghani, M. (2013). Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care, 36 Suppl 2(Supplement 2), S127-38. https://doi.org/10.2337/dcS13-2011
DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., … Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(1), 15019. https://doi.org/10.1038/nrdp.2015.19
Dong, S., Lau, H., Chavarria, C., Alexander, M., Cimler, A., Elliott, J. P., … Lakey, J. R. T. (2019). Effects of Periodic Intensive Insulin Therapy: An Updated Review. Current Therapeutic Research - Clinical and Experimental. https://doi.org/10.1016/j.curtheres.2019.04.003
Eisenberg, M., Maker, A., Slezak, L., Nathan, J., Sritharan, K., Jena, B., … Andersen, D. (2005). Insulin Receptor (IR) and Glucose Transporter 2 (GLUT2) Proteins Form a Complex on the Rat Hepatocyte Membrane. Cellular Physiology and Biochemistry, 15(1–4), 051–058. https://doi.org/10.1159/000083638
Elangovan, A., Subramanian, A., Durairaj, S., Ramachandran, J., Lakshmanan, D. K., Ravichandran, G., … Thilagar, S. (2019). Antidiabetic and hypolipidemic efficacy of skin and seed extracts of Momordica cymbalaria on alloxan induced diabetic model in rats. Journal of Ethnopharmacology, 241. https://doi.org/10.1016/j.jep.2019.111989
Evan, A. P., Mong, S. A., Connors, B. A., Aronoff, G. R., & Luft, F. C. (1984). The effect of alloxan, and alloxan‐induced diabetes on the kidney. The Anatomical Record, 208(1), 33–47. https://doi.org/10.1002/ar.1092080105
Guo, S. (2014). Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. The Journal of Endocrinology, 220(2), T1–T23. https://doi.org/10.1530/JOE-13-0327
Han, N. ., Kirigia, J. ., Claude, J. ., Ogurstova, K. ., Guariguata, L. ., Rathmann, W. ., … Reja, A. (2017). Diabetes Atlas de la FID. In International Diabetes Federation. https://doi.org/10.1016/j.diabres.2017.09.002
Huang, S., & Czech, M. P. (2007). The GLUT4 Glucose Transporter. Cell Metabolism, 5(4), 237–252. https://doi.org/10.1016/j.cmet.2007.03.006
Ighodaro, O. M., Adeosun, A. M., & Akinloye, O. A. (2017, January 1). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (Lithuania), Vol. 53, pp. 365–374. https://doi.org/10.1016/j.medici.2018.02.001
Islam, M. K., Tsuboya, C., Kusaka, H., Aizawa, S. ichi, Ueki, T., Michibata, H., & Kanamori, K. (2007). Reduction of vanadium(V) to vanadium(IV) by NADPH, and vanadium(IV) to vanadium(III) by cysteine methyl ester in the presence of biologically relevant ligands. Biochimica et Biophysica Acta - General Subjects, 1770(8), 1212–1218. https://doi.org/10.1016/j.bbagen.2007.05.003
Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., … Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3(1), 17016. https://doi.org/10.1038/nrdp.2017.16
Kharroubi, A. T., & Darwish, H. M. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6(6), 850–867. https://doi.org/10.4239/wjd.v6.i6.850
Kim, H.-G. (2019). Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam University Journal of Medicine, 36(3), 183–191. https://doi.org/10.12701/yujm.2019.00255
King, A., & Austin, A. (2017). Animal Models of Type 1 and Type 2 Diabetes Mellitus. Animal Models for the Study of Human Disease, 245–265. https://doi.org/10.1016/B978-0-12-809468-6.00010-3
King, A. J. F. (2012). The use of animal models in diabetes research. British Journal of Pharmacology, 166(3), 877–894. https://doi.org/10.1111/j.1476-5381.2012.01911.x
Korbecki, J., Baranowska-Bosiacka, I., Gutowska, I., & Chlubek, D. (2012). Biochemical and medical importance of vanadium compounds. Acta Biochimica Polonica, Vol. 59, pp. 195–200. https://doi.org/10.18388/abp.2012_2138
Lee, T., Kuo, S., Yang, C., & Ou, H. (2019). Cost‐effectiveness of long‐acting insulin analogues versus intermediate/long‐acting human insulin for type 1 diabetes: a population‐based cohort following over 10 years. British Journal of Clinical Pharmacology, bcp.14188. https://doi.org/10.1111/bcp.14188
Lee, Y. B., Lee, J. H., Park, E. S., Kim, G. Y., & Leem, C. H. (2014). Personalized metabolic profile estimations using oral glucose tolerance tests. Progress in Biophysics and Molecular Biology, 116(1), 25–32. https://doi.org/10.1016/j.pbiomolbio.2014.08.011
Lenzen, S., Tiedge, M., & Panten, U. (1987). Glucokinase in pancreatic B-cells and its inhibition by alloxan. Acta Endocrinologica, 115(1), 21–29. https://doi.org/10.1530/acta.0.1150021
Levina, A., & Lay, P. A. (2011). Metal-based anti-diabetic drugs: advances and challenges. Dalton Transactions, 40(44), 11675. https://doi.org/10.1039/c1dt10380f
Liu, Y., Chen, D. D., Xing, Y. H., Ge, N., Zhang, Y., Liu, J., & Zou, W. (2014). A new oxovanadium complex enhances renal function by improving insulin signaling pathway in diabetic mice. Journal of Diabetes and Its Complications, 28(3), 265–272. https://doi.org/10.1016/j.jdiacomp.2014.02.001
Martínez, T. G., Pauls, B. M., Cabrera, A. M. V., Granell, C. L., & Piqueres, R. F. (2017). Predictive factors of hyperglycemia in hospitalized adults receiving total parenteral nutrition. Farmacia Hospitalaria, 41(6), 667–673. https://doi.org/10.7399/fh.10784
Mehdi, M. Z., Pandey, S. K., Théberge, J.-F., & Srivastava, A. K. (2006). Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochemistry and Biophysics, 44(1), 73–81. https://doi.org/10.1385/CBB:44:1:073
Mehdi, M. Z., & Srivastava, A. K. (2005). Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: Mechanism of insulinomimesis. Archives of Biochemistry and Biophysics, 440(2), 158–164. https://doi.org/10.1016/j.abb.2005.06.008
Mendivil Anaya, C. O., & Sierra Ariza, I. D. (2005). Insulin action and resistance: molecular aspects. Revista de La Facultad de Medicina, 53(4), 235–243.
Michibata, H. (2012). Vanadium Biochemical and Molecular Biological Approaches. In The British Journal of Psychiatry (Vol. 111). https://doi.org/10.1192/bjp.111.479.1009-a
Pandey, S. K., Anand-Srivastava, M. B., & Srivastava, A. K. (1998). Vanadyl sulfate-stimulated glycogen synthesis is associated with activation o phosphatidylinositol 3-kinase and is independent of insulin receptor tyrosine phosphorylation. Biochemistry, 37(19), 7006–7014. https://doi.org/10.1021/bi9726786
Papargyri, P., Ojeda Rodríguez, S., Corrales Hernández, J. J., Mories Álvarez, M. T., Recio Córdova, J. M., Delgado Gómez, M., … Miralles García, J. M. (2014). Estudio observacional de infusión subcutánea continua de insulina a lo largo de 7 años en el tratamiento de la diabetes mellitus tipo 1. Endocrinologia y Nutricion, 61(3), 141–146. https://doi.org/10.1016/j.endonu.2013.09.003
Pessoa, J. C. (2015). Thirty years through vanadium chemistry. Journal of Inorganic Biochemistry, 147, 4–24.
Pessoa J.Costa, Crans Debbie C., & Kustin Kenneth. (2007). Vanadium: The Versatile Metal (Vol. 974). https://doi.org/10.1021/bk-2007-0974
Pourghasem, M., Nasiri, E., & Shafi, H. (2014). Early renal histological changes in alloxan-induced diabetic rats. International Journal of Molecular and Cellular Medicine, 3(1), 11–15. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24551816
Quirós, C., Jansà, M., Viñals, C., Giménez, M., Roca, D., Escarrabill, J., … Conget, I. (2019). Experiences and real life management of insulin pump therapy in adults with type 1 diabetes. Endocrinologia, Diabetes y Nutricion, 66(2), 117–123. https://doi.org/10.1016/j.endinu.2018.05.017
Quirós, C., Patrascioiu, I., Giménez, M., Vinagre, I., Vidal, M., Jansà, M., & Conget, I. (2014). Evaluación de la utilización de las prestaciones específicas de los sistemas de infusión subcutánea de insulina y su relación con el control metabólico en pacientes con diabetes tipo 1. Endocrinologia y Nutricion, 61(6), 318–322. https://doi.org/10.1016/j.endonu.2014.01.003
Rask-Madsen, C., & Kahn, C. R. (2012). Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 2052–2059. https://doi.org/10.1161/ATVBAHA.111.241919
Rees, D. A., & Alcolado, J. C. (2005). Animal models of diabetes mellitus. Diabetic Medicine, 22(4), 359–370. https://doi.org/10.1111/j.1464-5491.2005.01499.x
Rehder, D. (2008). Bioinorganic vanadium chemistry. In Bioinorganic Vanadium Chemistry. https://doi.org/10.1002/9780470994429
Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806. https://doi.org/10.1038/414799a
Samira, M., Mounira, T., Kamel, K., Yacoubi, M. T., Ben Rhouma, K., Sakly, M., & Tebourbi, O. (2018). Hepatotoxicity of vanadyl sulfate in nondiabetic and streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 96(11), 1076–1083. https://doi.org/10.1139/cjpp-2018-0255
Schofield, J., Ho, J., & Soran, H. (2019). Cardiovascular Risk in Type 1 Diabetes Mellitus. Diabetes Therapy, 10(3), 773–789. https://doi.org/10.1007/s13300-019-0612-8
Shah, S. Zu. H. (2016). Effects of oral vanadium on glycaemic and lipid profile in rats. Retrieved from https://jpma.org.pk/article-details/8009?article_id=8009&fbclid=IwAR0GiewzHSv-RDtRLpUD1Fr1UYGRGnBA7BGwcn4FQs-HWv68goegQUBIPu4
Shalimova, A., Graff, B., Gąsecki, D., Wolf, J., Sabisz, A., Szurowska, E., … Narkiewicz, K. (2019). Cognitive Dysfunction in Type 1 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 104(6), 2239–2249. https://doi.org/10.1210/jc.2018-01315
Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A., & Sakharkar, M. K. (2016, July 3). Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker Insights, Vol. 11, pp. 95–104. https://doi.org/10.4137/Bmi.s38440
Shulman, R. M., & Daneman, D. (2010). Type 1 diabetes mellitus in childhood. Medicine, 38(12), 679–685. https://doi.org/10.1016/J.MPMED.2010.09.001
Sibiya, S., Msibi, B., Khathi, A., Sibiya, N., Booysen, I., & Ngubane, P. (2019). The effect dioxidovanadium complex (v) on hepatic function in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology. https://doi.org/10.1139/cjpp-2019-0369
Sidorova, Y. S., Skalnaya, M. G., Tinkov, A. A., & Mazo, V. K. (2019). The effect of vanadium compounds on carbohydrate and lipid metabolism disorders. Problems of Endocrinology, 65(3), 184–190. https://doi.org/10.14341/probl10093
Srivastava, A. K., & Mehdi, M. Z. (2005). Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabetic Medicine, 22(1), 2–13. https://doi.org/10.1111/j.1464-5491.2004.01381.x
Szkudelski, T. (2001). The Mechanism of Alloxan and Streptozotocin Action in B Cells of the Rat Pancreas. Retrieved from http://www.biomed.cas.cz/physiolres/s.htmPhysiol.Res.50:536-546,2001
Thompson, K. H., Lichter, J., LeBel, C., Scaife, M. C., McNeill, J. H., & Orvig, C. (2009). Vanadium treatment of type 2 diabetes: A view to the future. Journal of Inorganic Biochemistry, 103(4), 554–558. https://doi.org/10.1016/j.jinorgbio.2008.12.003
Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232. https://doi.org/10.1007/s00125-014-3451-1
Titchenell, P. M., Quinn, W. J., Lu, M., Chu, Q., Lu, W., Li, C., … Birnbaum, M. J. (2016). Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production. Cell Metabolism, 23(6), 1154–1166. https://doi.org/10.1016/j.cmet.2016.04.022
Treviño, S., Díaz, A., Sánchez-Lara, E., Sanchez-Gaytan, B. L., Perez-Aguilar, J. M., & González-Vergara, E. (2018). Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biological Trace Element Research, 188(1), 68–98.
https://doi.org/10.1007/s12011-018-1540-6
Treviño, S., Velázquez-Vázquez, D., Sánchez-Lara, E., Diaz-Fonseca, A., Flores-Hernandez, J. Á., Pérez-Benítez, A., … González-Vergara, E. (2016). Metforminium Decavanadate as a Potential Metallopharmaceutical Drug for the Treatment of Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2016, 1–14. https://doi.org/10.1155/2016/6058705
Wang, H. Y., Ducommun, S., Quan, C., Xie, B., Li, M., Wasserman, D. H., … Chen, S. (2013). AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochemical Journal, 449(2), 479–489. https://doi.org/10.1042/BJ20120702
Wilcox, G. (2005). Insulin and insulin resistance. The Clinical Biochemist. Reviews, 26(2), 19–39. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16278749
Wilk, A., Szypulska-Koziarska, D., & Wiszniewska, B. (2017). The toxicity of vanadium on gastrointestinal, urinary and reproductive system, and its influence on fertility and fetuses malformations. Postepy Higieny i Medycyny Doswiadczalnej (Online), 71, 850–859. https://doi.org/10.5604/01.3001.0010.4783
Willsky, G., Takeuchi, E., & Tracey, A. (2010). Vanadium in Biological Systems. In Vanadium. https://doi.org/10.1201/9781420046144.ch10
Xie, M., Chen, D., Zhang, F., Willsky, G. R., Crans, D. C., & Ding, W. (2014). Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. Journal of Inorganic Biochemistry, 136, 47–56. https://doi.org/10.1016/j.jinorgbio.2014.03.011
Zheng, C. M., Ma, W. Y., Wu, C. C., & Lu, K. C. (2012, October 9). Glycated albumin in diabetic patients with chronic kidney disease. Clinica Chimica Acta, Vol. 413, pp. 1555–1561. https://doi.org/10.1016/j.cca.2012.04.025
Enlaces refback
- No hay ningún enlace refback.